
Introduction:

This is a SMD BLE module used in our BLE Bee and Xadow BLE. It is based on TI CC2541 chip,
enables robust network nodes to be built with low total bill-of-material costs and highly suited
for ultralow power consumption systems. The module is small and easy to use, with the
preprogrammed firmware of manufacturer, you could quickly build BLE communications via its AT
command. Supporting BLE communications with iphone, ipad and Android 4.3.

Feature:

Bluetooth protocol: Bluetooth Specification V4.0 BLE
Working frequency: 2.4 GHz ISM band
Interface way: a serial port
Open environment within 30 meters can realize communication between modules
To send and receive no byte limit between modules
Modulation method: GFSK (Gaussian Frequency Shift Keying)
Transmission power: - DBM, 23-6 DBM, 0 DBM, 6 DBM, can be modified by the AT command
Use TI CC2541 chip, configuration space of 256 KB, support the AT command, the user can
according to need to change the role (master, slave mode) and the serial port baud rate, name of
equipment, matching parameters such as passwords, use agile.
Power supply: + 3.3 VDC 50 mA
Working temperature: - 5 ~ + 65 Centigrade
 

Specification:
 

Specification Value

Microprocessor CC2541

Resources

Support the AT command, the user can according to need to
change the role (master, slave mode) and the serial port baud
rate,name of equipment,Matching parameters such as
password, the use of flexible.

Outline Dimension 13.5mm x 18.5mm x 2.3mm

Power supply 3.3V

Communication Protocol Uart(3.3V LVTTL)

IO counts 2

Key input IO 1

LED Indicators IO 1

Connectivity Socket compatible with XBee

Electrical Characteristics:

Specification Min Typ Max Unit

Max Input Voltage -0.3 3.6 V

Working Input Voltage 2 3.3 3.6 V

Transmit Current 15 mA

Receive Current 8.5 mA

Deep Sleep Current 600 uA

Operating Temperature -40 65 °C

 

Pin definition:

Pin Name Description

1 UART_RTS UART

2 UART_TX UART

3 UART_CTS UART

4 UART_RX UART

5 NC

6 NC

7 NV

8 NV

9 VCC Power supply 3.3V

10 NC

11 RESETB Reset, active low at least in 5ms

12 GND GND

13 PIO3 IO port, used for connect to DHT11/DS18B20

14 PIO2 Digital input, output

15 PIO1 LED indicator

16 PIO0 Button pin

 

 AT commands & Configuration:

**1） Query the native MAC address ** Send: AT+ADDR?

Send after a successful return: OK+LADD: MAC address (address for 12 string)

**2） Query the baud rate ** Send: AT+BAUD?

Send after a successful return: OK+Get: [para1]

Scope of para1:0 ~ 8. The parameters corresponding lists as below:

0 -------- 9600
1 -------- 19200
2 -------- 38400
3 -------- 57600
4 -------- 115200
5 -------- 4800
6 -------- 2400
7 -------- 1200
8 -------- 230400
Default: 0(9600)

**3） Set the baud rate ** Send: AT+BAUD[para1]

Send after a successful return: OK+Set:[para1]

Example: send: AT + BAUD1, return: OK+Set: 2.The baud rate is set to 19200.

Note: after the switch to the 1200, module will no longer support the configurations of the AT
command, and press the PIO0 under standby, module can restore the factory Settings.Do not
recommend using the baud rate.After setting the baud rate, modules should be on electricity,
anew set parameters can take effect.

**4） from the device connected to the bluetooth address specified ** Send: AT+CON[para1]

Send after a successful return: OK+CONN[para2]

Para2 range is: A, E, F

Example: from the bluetooth address is: 0017EA0943AE, sending the AT+CON0017EA0943AE,
module returns: OK+CONNA or OK+CONNF CONNE or OK.

**5） removal equipment matching information ** Send: AT+CLEAR

Send after a successful return: OK+CLEAR

Clear success had connected device address code information.

**6） query module working mode ** Send: AT+MODE?

Send after a successful return: OK+Get: [para]

Para: the range of 0 ~ 2. 0 represents passthrough mode, on behalf of the PIO acquisition +
remote control + 1 passthrough, 2 representative passthrough + remote control mode.The default
is 0.

**7） set module working mode: ** Send: AT+MODE []

Send after a successful return: OK+Set: [para]

**8） query device name ** Send: AT+NAME?

Send after a successful return: OK+NAME [para1]

**9） set the device name ** Send: AT+NAME [para1]

Send after a successful return: OK+Set: [para1]

Example: Set the device name to Seeed, sending the AT + NAMESeeed, return OK + Set: Seeed AT
this time, the name of the bluetooth module has been changed to Seeed. Note: after the
instruction execution, required to electricity, set the parameters of the approval.

**10） query matching password ** Send: AT+PASS?

Send after a successful return: OK+PASS: [para1]

Para1 range is 000000 ~ 999999, the default is 000000.

**11） pairing set password ** Send the AT+PASS [para1]

Send after a successful return: OK+Set: [para1]

**12） restore factory Settings ** The AT+RENEW send

Send after a successful return: OK+RENEW

Restore the default factory Settings module, the module Settings will be reset so, back to the
factory with the status of the factory default, delay module 500 ms after the restart.If no need,
please be careful.

**13） module reset ** Send: AT+RESET

Send after a successful return: OK+RESET

After the instruction execution module will delay 500 ms after the restart.

**14） set the master-slave mode ** Send: AT + ROLE [para1]

Send after a successful return: OK+Set: [para1]

Example Code:

//master
 
/* This example code is in the public domain. */ #include

<SoftwareSerial.h> SoftwareSerial mySerial(2, 3); // RX, TX void setup()

{ // Open serial communications and wait for port to open:

Serial.begin(9600); while (!Serial) { ; // wait for serial port to connect.

Needed for Leonardo only } Serial.println("Goodnight moon!"); // set the

data rate for the SoftwareSerial port mySerial.begin(9600); // set master

mySerial.print("AT+ROLE1"); delay(10000); } void loop() // run over and

over { // set the data rate for the SoftwareSerial port

mySerial.print("test I am master "); delay(10000); if

(mySerial.available()) Serial.write(mySerial.read()); if

(Serial.available()) mySerial.write(Serial.read());

//slave

/* This example code is in the public domain. */ #include

<SoftwareSerial.h> SoftwareSerial mySerial(2, 3); // RX, TX void setup()

{ // Open serial communications and wait for port to open:

Serial.begin(9600); while (!Serial) { ; // wait for serial port to connect.

Needed for Leonardo only } Serial.println("Goodnight moon!"); // set the

data rate for the SoftwareSerial port mySerial.begin(9600); // set slave

mySerial.print("AT+ROLE0"); delay(10000); } void loop() // run over and

over { // set the data rate for the SoftwareSerial port

mySerial.print("test I am slave "); delay(10000); if

(mySerial.available()) Serial.write(mySerial.read()); if

(Serial.available()) mySerial.write(Serial.read()); }

	Introduction:
	Feature:
	Electrical Characteristics:
	Pin definition:
	Example Code:

